Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Chemical Engineering Transactions ; 88:79-84, 2021.
Article in English | Scopus | ID: covidwho-1625809

ABSTRACT

The global scientific community has been successful in their efforts to develop, test, and commercialize vaccines for COVID-19. However, the limited supply of these vaccines remains to be a widespread problem as different nations have started their respective vaccine rollouts. Policymakers continue to deal with the difficult task of determining how to allocate them. This research work will present how the use of mathematical models can provide valuable decision support under such conditions. Both a linear programming model and a nonlinear programming model have been developed to determine the optimal allocation of COVID-19 vaccines that minimize fatalities and COVID-19 transmission, respectively. These scenarios have to be dealt with when not enough vaccines are available, and the pandemic is still in progress. The model is capable of handling large scale allocation problems such as those intended for the general population of a country. It could also be scaled down for organizations such as private companies or universities. The model also considers multiple vaccines with different levels of efficacy. The distribution of vaccines reduces transmission and relative infectiousness of individuals across different age groups. A hypothetical case study is solved to illustrate the computational capability of the models. The results indicate that priority should be given to the elderly when fatalities are minimized. In contrast, the younger population should then be prioritized when the objective shifts to suppressing contagion. © 2021, AIDIC Servizi S.r.l.

2.
Clean Technol Environ Policy ; 22(6): 1359-1370, 2020.
Article in English | MEDLINE | ID: covidwho-597157

ABSTRACT

Abstract: The global scientific community has intensified efforts to develop, test, and commercialize pharmaceutical products to deal with the COVID-19 pandemic. Trials for both antivirals and vaccines are in progress; candidates include existing repurposed drugs that were originally developed for other ailments. Once these are shown to be effective, their production will need to be ramped up rapidly to keep pace with the growing demand as the pandemic progresses. It is highly likely that the drugs will be in short supply in the interim, which leaves policymakers and medical personnel with the difficult task of determining how to allocate them. Under such conditions, mathematical models can provide valuable decision support. In particular, useful models can be derived from process integration techniques that deal with tight resource constraints. In this paper, a linear programming model is developed to determine the optimal allocation of COVID-19 drugs that minimizes patient fatalities, taking into account additional hospital capacity constraints. Two hypothetical case studies are solved to illustrate the computational capability of the model, which can generate an allocation plan with outcomes that are superior to simple ad hoc allocation.

SELECTION OF CITATIONS
SEARCH DETAIL